Dynamic GSCANO (Generalized Structured Canonical Correlation Analysis) with applications to the analysis of effective connectivity in functional neuroimaging data
نویسندگان
چکیده
Effective connectivity in functional neuroimaging studies is defined as the time dependent causal influence that a certain brain region of interest (ROI) exerts on another. A new method of structural equation modeling (SEM) is proposed for analyzing common patterns among multiple subjects’ effective connectivity. The proposed method, called Dynamic GSCANO (Generalized Structured Canonical Correlation Analysis) incorporates contemporaneous and lagged effects between ROIs, direct and modulating effects of stimuli, as well as interaction effects among ROIs. An alternating least squares (ALS) algorithm is developed for estimating parameters. Synthetic and real data are analyzed to demonstrate the feasibility and usefulness of the proposed method.
منابع مشابه
Generalization of Canonical Correlation Analysis from Multivariate to Functional Cases and its related problems
In multivariate cases, the aim of canonical correlation analysis (CCA) for two sets of variables x and y is to obtain linear combinations of them so that they have the largest possible correlation. However, when x and y are continouse functions of another variable (generally time) in nature, these two functions belong to function spaces which are of infinite dimension, and CCA for them should b...
متن کاملErratum to: Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data.
We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accomm...
متن کاملDynamic Gsca (generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data
We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also incorporates direct and modulating effects of input vari...
متن کاملEvaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملIdentification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 101 شماره
صفحات -
تاریخ انتشار 2016